当前位置:首页 > 无线充电 >无线充电技术难点,无线充电技术难点是什么

无线充电技术难点,无线充电技术难点是什么

大家好,今天小编关注到一个比较有意思的话题,就是关于无线充电技术难点的问题,于是小编就整理了2个相关介绍无线充电技术难点的解答,让我们一起看看吧。

苹果8支持Wi-Fi无线充电吗?



恭喜你,回答正确,苹果8支持无线充电,说到无线充电,我就想到了未来,我的手机,蓝牙等 都不用线子充电了,再也不怕手机缺电了。

无线充电技术难点,无线充电技术难点是什么

目前为止还未知无线充电效果,日常生活中如果都可以无线充电,那样生活会很有趣,但也会增加电能损耗。

看样子无线充电如果手机应用能普及开来,将会有更大的发展,电动汽车 电瓶车 家里的照明灯到时候都可以用无线 供电 充电 ,岂不美哉。

首先题主说的WiFi无线充电可能是说错了,因为目前没有一部手机有这个功能,不过iPhone 8确实支持无线充电,不过这里的无线充电指的是电磁感应无线充电。

目前最为常见的手机无线充电解决方案就采用了电磁感应,充电底座以及手机终端分别内置了线圈,二者靠近以后,发射线圈通过一定频率的交流电,通过电磁感应在手机接收线圈中产生一定的电流,从而将点能量从发射端转移到接收端。便开始从充电座向手机进行供电。

目前该技术被广泛的运用到了手机无线充电领域。

但这种方式的无线充电技术也存在比较明显的弊端——传输距离短、位置要求严格。现阶段上市的无线充电手机,都需要手机与充电板接触才能进行无线充电,而且对放置位置有着极为苛刻的要求。为提高供电效率,需要使线圈之间的位置对齐,不产生偏移。

在此次发布会上,苹果随同iPhone8一同发布了一款可谓iPhone8提供无线充电的设备——AirPower充电枕,官方戏称其形如圆盘,不过乍一看也的确挺像的。按苹果的说法是,由于今年为iPhone8采用了玻璃材质背板,才敢把这项技术用上。支持无线充电之后,往后iPhone8的用户便可以外出时在餐馆、商店或是车里随时随地为手机充电了,的确是方便不少。

首先更正一下,并没有WiFi充电这一个技术,你说的应该是电磁感应充电。苹果8是有的。电磁感应充电是需要用手机紧贴着充电器才能充电,不能离开充电器。唯一方便的地方其实就是充电的时候不用插拔充电线,把手机往充电器那里一放就可以充电了。坏处是不能一边充电一边玩手机。

可控核聚变难点在哪里?为什么要实现?

要回答这个问题,你首先要理解:核聚变为什么很难发生?

回答是:爱因斯坦的质能关系E = mc^2只能告诉你核反应发生前后的能量变化,但不会告诉你反应的过程。核聚变要发生,必须首先让两个原子核靠得非常近。非常近是多近?在10^(-15)米的量级。要知道,一个原子中原子核跟电子的距离都有10^(-10)米的量级,也就是说,两个原子核要靠近到原子尺度的10万分之一才能聚变!

在这样一个小得不可思议的距离下,核子之间具有很强的吸引力(核力)。然而核力随着距离的增加下降得非常快,稍微远一点就几乎为零了。打个比方,核子就像一对近视度数很深的恋人,离得很近时会拉住手,但离得稍远时就看不见了,形同路人。

这就带来一个严重的问题。核子包括质子和中子,中子没有电荷,但质子有正电荷,所以质子和质子之间具有静电排斥力,根据库仑定律这个力反比于距离的平方。当距离小到10^(-15)米的量级时,核力的吸引超过静电力的排斥,两个原子核会聚合到一起,放出大量的能量。但它们很难从正常的距离(比如说10^(-9)米)开始达到这么近,因为在这种距离下核力小于静电力,净作用是排斥的。好比恋人们都穿着红色衣服,而红色跟红色之间互斥,离得很远时就会互相推开,那么他们还有多少机会接近到足以拉上手?

当然,不是完全不可能。如果两个原子核一开始的运动方向就是相向而行,而且初速度很高,那么它们会一边靠近一边减速,有可能在相对速度减到零之前达到10^(-15)米的距离。这就是发生核聚变的希望。因此,核聚变只有在高温高压下才能发生。

高温和高压的效果在一定程度上可以互换。在太阳中心,由于压强高达2000亿个大气压,所以“只需要”1500万度的“低温”就可以把氢聚合成氦(这个温度真是好低呀,令人一阵清凉……)。但在地球上,由于压强达不到那么高,所以得把温度提高到上亿度才行。

太阳

明白了以上基础,你就可以理解,可控核聚变的难点在于两个技术问题。一,如何将聚变材料加热到这么高的温度?二,用什么容器来装温度这么高的聚变材料?把核聚变反应堆看成一个火炉,第一个问题就相当于“怎么点火”,第二个问题相当于“怎么保证不把炉子烧穿”。

对第一个问题的回答,惯性约束激光点火是一条思路。把聚变燃料放在一个弹丸内部,用超强激光照射弹丸,瞬间达到高温,弹丸外壁蒸发掉,并把核燃料向内挤压。美国的“国家点火装置”和中国的“神光三号”等实验装置,走的就是这条路。

对第二个问题的回答,磁约束是一条思路。把聚变燃料做成等离子体(原子核和电子分离,都可以自由流动),用超强磁场约束等离子体,让它们悬空高速旋转,不跟容器直接接触。EAST等托卡马克装置,走的就是这条路。

一大麻烦在于,这两条路是互相矛盾的。聚变燃料如果处于静止,就很难不把容器烧穿;而如果处于运动中,聚焦点火又变得困难。这就是可控核聚变难度如此之大的原因。

核聚变,本质就是再造太阳。在一般的条件下,核聚变是不会发生的。但在太阳中心,1500万度的高温和2000亿个大气压的高压下,氢就可以聚变成氦了。这样的反应已经进行了46亿年,向外发出了巨大的能量。其中很微小的一部分落到地球上,就滋养了地球丰富的生态圈和整个人类。大自然的安排多么不可思议!请关注:容济点火器

在太阳中心,氢可以在1500万度的高温和2000亿个大气压的高压下聚变成氦。而在地球上没有那么高的压强,要发生聚变,温度就只好更高,达到上亿度。有什么办法能达到这么苛刻的条件呢?所以核聚变的根本难点在于高温处理:

1、如何将聚变材料加热到这么高的温度?2、用什么容器来装温度这么高的聚变材料?把核聚变反应堆看成一个火炉,第一个问题就相当于“怎么点火”,第二个问题相当于“怎么保证不把炉子烧穿”。

氢弹就是一种核聚变,它可是要用原子弹去点燃的,这是多么可怕的一件事了,你想让它可控,这个点火还真是头痛问题了。

怎么将核聚变的原料加热到这么高的温度?(怎么点燃炉子里面的燃料?)

将核聚变的原料加热到这么高的温度以后拿什么来装它?(怎么让燃料不把炉子烧穿了?)

首先来说第1个问题,关于如何加热的方法,从上世纪60年代开始,激光器的发明,为如何将物质加热到极高能量这一问题打开了一条门缝。最早是苏联专家开始考虑使用激光加热核聚变的原料,因为该方法能量大,而且无需与被加热物质接触,简单理解就是类似于拿阳光聚焦之后点燃木屑。但是单个激光器的能量太低,所以为了解决这样的问题,需要将多个激光器的能量聚焦于同一点。该问题看似简单,实则非常困难。因为必须保证在短暂的加热时间内,被加热物体的所有方向受热均匀,一致向球心坍缩(简单理解就是将被加热物质想象成一个足球,如果想要挤压足球内部的空气,最好的方法就是从四面八方一起用力,使其体积被压缩。如果仅仅从两个方向使劲,则足球会变形,足球内部的空气被挤压效果就会大打折扣)。这不仅需要每个激光器对准的方向控制地异常精确,也需要在这一极短的时间内每个激光器的能量大小需要严格控制。目前在该领域美国的研究进展是最快的,其「国家点火装置」目前正在实验将192个激光器聚焦于同一点。而我国的「神光三号」项目目前则正在试验将32个激光器聚焦,下一步目标是48个。

我国研发的神光3号惯性约束核聚变激光驱动装置

现在再来讨论第2个问题,我们拿什么来盛放这些物质。上亿度的物质足够烧毁任何与其相接触的东西,那么就算能将这些反应燃料点燃,又能拿什么来盛放它?「超导托卡马克」装置的研制就是为了实现能将上亿度的物质存放于其中的目的。具体的基本原理在高中物理课本就有提到,是通过将这些物质约束在一个密闭的环中使其高速旋转,来将其固定在一个密闭的空间中,从而实现了变相的盛放

如果这两个问题能够得以解决,则其他问题大体可以迎刃而解——但是目前还有一个更加严重的问题,那就是这两种分别针对两个难点的方案,完全没有办法使其结合起来!由于神光三号属于惯性约束过程,需要聚变物质静止于指定的标靶位置等待加热,点燃,而超导托卡马克装置则属于磁约束过程,如果聚变物质静止下来,则无法在磁场中受到相应的洛伦兹力等作用从而被约束在一个指定的密闭空间当中。所以这两种方案只能在对一个问题的解决占有极大优势的情况下想办法去解决另一问题。

就目前来看,更加现实的研究方法是想办法在超导托卡马克系统当中,加热其中的等离子体,从而压缩核燃料的密度,提高其温度,从而引发核聚变。但是该方法显得太过低效,想想看,要靠慢慢烧的办法将一团物质烧到一亿度...而且即使烧到了这么高的温度,目前也不能长时间维持这一高温高压状态,而在目前的实验条件下,能够一直维持这样高温高压状态的持续时间,甚至还不足以引起核聚变。

另一方面,神光三号对于如何防止燃料烧穿的研究则更显得没有诚意。目前的方案是在极短时间内将上百个激光头的能量全部打到一个极小的,装有核燃料的标靶上,制造一次极小的核聚变,从而在瞬间将该核聚变过程完成,并释放大量能量。等效于通过一次又一次,制造极小的微型氢弹爆炸,在爆炸威力不会对仪器产生太大影响的前提下,来释放出标靶内核燃料的能量。但即使是这样,目前来看还没有什么办法能在如此短的时间内充分吸收如此多的能量——当然了,由于目前连「将多颗激光器聚焦于同一点」这一看似更简单的问题都还未得到攻克,现在这个看似更大的问题也还没有看到相应的进展。

最后,包括《钢铁侠》在内,还是有科学家相信,对于核聚变来说极高的温度并非是必要的反应条件。

如果真的存在不需要上亿度的高温即可制造核聚变的过程的话,以上这些讨论就都不再有意义,那时核聚变发电就如同今日的核裂变发电一样简单,甚至要比当今的核电站更加普及,更加受欢迎。因此,关于「冷核聚变」,一批又一批的人向其发起挑战,试图证明其真实的存在。虽然到目前为止,还没有任何证据表明即使是在更低的温度下,核聚变过程依然可以发生,可面对巨大的利益诱惑,近几十年来还是不断在有人宣称自己的研究小组实现了 「冷核聚变」——只是最终都被证明是骗局罢了。

可控核聚变什么时候能实现?有个笑话是“永远还需25年”。有人估计是2050年。不过这些全都是猜测,由于难度太大,无论任何时候能搞出来都是好的。我们在目前能做的,就是多试验,多投入。在条件允许的范围内,只问耕耘,不问收获。即使是失败的探索,也会获得经验教训,对将来是有益的。

到此,以上就是小编对于无线充电技术难点的问题就介绍到这了,希望介绍关于无线充电技术难点的2点解答对大家有用。

最新资讯

推荐资讯